<label id="dnjtp"></label>
  • <sub id="dnjtp"></sub><li id="dnjtp"></li>
  • <source id="dnjtp"><optgroup id="dnjtp"></optgroup></source>

    山東鑫泰水處理技術(shù)股份有限公司

    Top-Quality Manufacturer In Water Treatment Industry

    水處理行業(yè)優(yōu)質(zhì)的生產(chǎn)商

    ENGLISH

    企業(yè)動態(tài)

    流光放電等離子體在環(huán)保方面的應(yīng)用

    2009/3/18

      水處理新技術(shù):流光放電等離子體在環(huán)保方面的應(yīng)用
      摘要: 本文介紹近期在流光放電低溫等離子體產(chǎn)業(yè)化過程中的二個核心問題, 大容量
      的等離子體系統(tǒng)和等離子體處理工藝的優(yōu)化。
      1. 引言
      就煙氣凈化而言,傳統(tǒng)方法是采用多種技術(shù)的串聯(lián)組合,分別對不同的污染物進行治理,至
      今為止, 還未能采用簡單經(jīng)濟的單一技術(shù)對煙氣中的多種污染物同時處理。由于流光放電低溫等
      離子體可有效地產(chǎn)生高能電子、離子、自由基 (如O、OH、H) 等多種分子激發(fā)態(tài), 放電等離子體
      在近二十年來一直被認為是下一代技術(shù),同時除去煙氣中的多種污染物 [1]。灰塵在放電等離子
      體中荷電、收集。有害氣體如NOx、SO2、H2S、HCI、二惡英、重金屬(Hg)等在等離子體中氧化,在
      有中和劑或吸收劑的情況下被吸收,達到凈化的目的。若使用氨中和劑,副產(chǎn)物可為復合肥使
      用。然而要實現(xiàn)該技術(shù)的產(chǎn)業(yè)化, 需要解決的二個核心技術(shù)問題是大容量的等離子體系統(tǒng)和優(yōu)化
      的等離子體處理工藝 [2,3]。相信在今后的10-30 年中,等離子體煙氣或廢氣凈化會同電除塵器
      一樣普及。不僅能除塵脫硫脫硝,而且能治理有機氣體 VOCs,除去HCI、HF、H2S、二惡英、重金
      屬 (如Hg) 等,同傳統(tǒng)技術(shù)相比,成本也許能減少幾倍。對電力、建材、冶金、化工、輕工、電
      子等行業(yè)的鍋爐、焚燒爐都有極好的應(yīng)用前景。本文主要介紹對上述兩個核心技術(shù)問題的近期研
      究。
      2. 流光放電等離子體的特性及其供電電源
      我們可以把正極性流光放電等離子體的發(fā)生分為兩大類: 同步式和隨機式, 它們的基本特性列
      于表1。目前在荷蘭、日本、韓國和中國都進行著10-100 kW 工業(yè)性示范研究 [4]。同步式流光放
      電等離子體系統(tǒng)是基于50–500 ns 的短脈沖電源, 主要的開關(guān)器件為火花式和磁壓縮。隨機式流光
      放電等離子體系統(tǒng)是基于高頻交直流疊加電源 (AC/DC), 電源全部采用半導體開關(guān)器件。供電方式
      可采用耦合式,也可采用直接式。圖1 和圖2 分別顯示兩套工業(yè)性等離子體系統(tǒng), 不同的等離子體
      發(fā)生方法對應(yīng)著不同的電源及反應(yīng)器設(shè)計, 大功率的等離子體電源都是采用在直流基壓上疊加短脈
      沖或疊加高頻交流 [5]。
      3. 流光放電等離子體的工業(yè)應(yīng)用
      3.1 下一代煙氣凈化系統(tǒng)
      將來的煙氣或廢氣凈化系統(tǒng)需要能控制多種污染物PM2.5、SOx、NOx、Hg、PCDDs、PCDFs、
      VOCs 等。事實上幾乎所有的燃燒器都產(chǎn)生這些污染物, 圖3 示意顯示目前我們正在研究開發(fā)的下
      一代流光放電等離子體煙氣凈化系統(tǒng), 它包括兩套等離子體, 一套靜電除塵器(ESP)或布袋除塵器
      (BF),或電袋組合除塵器。第一套干式等離子體反應(yīng)器對煙氣進行預處理氧化及煙塵調(diào)質(zhì),提高電
      除塵器效率。利用第二套半濕式等離子體反應(yīng)器實現(xiàn)從SOx、NOx 到(NH4)2SO4、NH4NO3 的轉(zhuǎn)換。等
      離子體產(chǎn)生的初始自由基主要是O、OH 和 H, H 很快通過反應(yīng)H+O2+M->HO2+M 生成HO2, OH(或H)
      與O 的比例大約是 20% 比80%。能耗大約為50 eV/[O][6]。煙氣中的等離子體化學反應(yīng)主要是與
      氣相中NOx 的氧化及液相中S(IV)與S(VI)之間轉(zhuǎn)換有關(guān),圖4 及圖5 分別說明所關(guān)聯(lián)的主要過
      程[6,7]。12,000Nm3/h 工業(yè)性研究表明等離子體的能耗可以從以前意大利ENEL 公司所報到的10-
      15 Wh/Nm3 降到2-4 Wh/Nm3 左右, 產(chǎn)物的98%為正鹽, 等離子體的能耗在很大程度上依賴于NOx
      的除去, 能耗一般在20-200 eV/[NO] 之間, 更詳細的工業(yè)研究還在實施中。
      圖3, 下一代煙氣凈化系統(tǒng)
      ESP
      BF
      NH3, H2O
      等離子體 - 1
      灰及重金屬化肥
      等離子體 - 2
      圖1, 12,000 Nm3/h 高頻交直流
      疊加電源及等離子體反應(yīng)器
      圖2, 30 kW 短脈沖電源
      及等離子體反應(yīng)器
      國家863 計劃項目(杰特科技)
      表1. 同步式和隨機式流光放電等離子體的特性比較
      特性 同步式 隨機式
      電源 短脈沖 交直流疊加
      流光放電頻率 50 – 1500 Hz 1 – 130 kHz
      電子能量 10 eV 10 eV
      峰值電流 ≤ 600 A/m 10 - 200 mA/streamer
      峰值功率 ≤ 600 MW/m 3 kW/streamer
      流光速度 5.0 x 105-3.5x106 m/s 2.0 x 105 m/s
      流光直徑 100 - 200 μm 20 – 50 μm
      離子電流與總電流之比 ? ~ 20 %
      一次流光放電能量 ( 3 J/m/pulse or 3mJ/streamer 0.3 mJ/streamer
      流光放電時差 同步
      2 - 5 ns/100mm
      隨機
      20 ns -1 ms/100mm
      優(yōu)點 等離子體的功率密度
      可調(diào)范圍大
      電源相對簡單技術(shù)成熟
      缺點 電源復雜有待開發(fā) 等離子體的功率密度
      可調(diào)范圍小
      電源的估價及現(xiàn)狀
      (100 kW)
      60 萬(人民幣)
      試生產(chǎn)(中荷環(huán)保)
      相對便宜
      生產(chǎn)(杰特科技)
      應(yīng)用領(lǐng)域 高低溫除塵及多種污染物的同時處理, 除臭, 滅菌, VOCs 處理, 水
      凈化等
      圖4, NOx 的等離子體氧化過程
      HNO2 + H2O2 ⇒ HNO3 + H2O, HNO3 ⇔ NO3
      - + H+
      2NO2 + S(IV) => N2 + S(VI)
      NO NO2 NO3 N2O5
      HNO2 HNO2 HNO3 HNO2 HNO3 HNO3
      HNO3
      N2O3 N2O4
      HNO2
      O, O3 O, O3, HO2 NO2
      NO2 NO
      OH
      OH
      O
      氣相
      液相
      3.2 空氣中有機揮發(fā)性氣體VOCs 及臭氣的凈化處理
      濃度低、風量大是治理有機揮發(fā)性氣體VOCs 及臭氣的最大難處。傳統(tǒng)的污染控制技術(shù)有各
      種洗刷過濾、稀釋及燃燒、活性碳吸附、催化、靜電除霧等, 一般來講這些傳統(tǒng)技術(shù)效果不佳經(jīng)
      濟性差, 濃度越低則成本越高。最近幾年的研究表明采用等離子體同這些傳統(tǒng)技術(shù)的組合不僅可以
      減少等離子體電耗, 而且能控制有害副產(chǎn)物的形成, 提高性能價格比 [1,3,8]。圖6 顯示一5000m3/h
      移動式等離子體與金屬網(wǎng)過濾器組合為一體的凈化器。對空氣中低濃度有機揮發(fā)性氣體VOCs 的
      治理, 能耗一般為10-50 eV/分子, 大部份副產(chǎn)物為氣溶膠。對食品工業(yè)、醫(yī)藥業(yè)、煙草業(yè)、工業(yè)車
      間等的除臭, 等離子體能耗一般在0.1-0.5 Wh/m3 左右, 處理時間在 10 ms-1.0 s 之間。這樣低的能耗
      及如此短的處理時間使得等離子體有著很強的市場竟爭力。圖1 及圖2 顯示的等離子體系統(tǒng)可應(yīng)
      用于風量為20,000-50,000 m3/h 的工業(yè)除臭。
      3.3 生物質(zhì)燃氣的的凈化處理
      隨著全球?qū)O2 排放的限制及能源的緊缺, 可再生的生物質(zhì)清潔能源越來越受到重視, 生物質(zhì)
      氣化技術(shù)是高效利用生物質(zhì)的重要途徑[9]。從生物質(zhì)氣化爐生成的粗燃氣含污染物NH3、HCN、
      HCl、H2S、顆粒及各種芳香烴焦油, 焦油的成份十分復雜, 有酚、萘、苯、苯乙烯等。隨燃氣溫
      度的下降, 重烴及輕烴相繼從燃氣中凝結(jié)出來, 同固體雜質(zhì)混合形成結(jié)實的灰垢, 堵塞管道, 很
      難清除, 是燃氣凈化最頭痛的問題。目前采用的凈化技術(shù)主要有水洗、過濾、熱分解及催化分
      解。水洗除焦既浪費能量又造成二次水污染, 過濾效率低, 熱分解需1100 度以上的高溫, 如果催化
      劑的壽命能得到改善, 高溫催化分解會有較好的發(fā)展前景, 目前仍處于研究階段。
      在過去的五年中, 流光電暈放電等離子體同時除塵除焦的研究取得了可喜的進展, 圖7 顯示
      一高溫生物質(zhì)燃氣電暈放電等離子體凈化器[10]。電暈放電可同時除塵分解氧化焦油, 同催化劑
      并用不僅可減少電耗, 改善催化劑的效果, 而且可降低催化劑的使用溫度實現(xiàn)催化劑的再生。在燃
      氣溫度為200-500℃時, 等離子體的能耗在100J/L 左右, 同催化劑并用可進一步減少能耗,目前正
      圖5, SOx 的等離子體氧化過程
      O2 SO2 OH
      HSO3
      - + H+
      SO3
      -
      H2O•O2
      K
      HSO3
      -
      氣相
      液相中的鏈式反應(yīng)
      液相 H2O•SO2
      SO5
      -
      HSO4
      -
      SO4
      -
      進行著更詳細的研究。結(jié)合高低溫流光放電等離子體有望實現(xiàn)生物質(zhì)燃氣的高度凈化。除生物質(zhì)
      燃氣凈化外, 這一技術(shù)也可用于煤氣的凈化, 在今后的三五年中, 這項技術(shù)可望得到應(yīng)用。
      3.4 水的凈化
      圖6, 5000 m3/h 移動式等
      離子體凈化器
      圖7, 高溫生物質(zhì)燃氣等離
      子體凈化器
      圖8, 10-20 kJ/pulse & 20-45 kA
      全固體開關(guān)電源
      目前有關(guān)水的等離子體凈化研究主要集
      中在以下內(nèi)容: 脈沖流光放電處理低濃度有機
      污染物及滅菌 [11,12], 脈沖火花式放電等離子
      體處理高濃度有機污染物及滅菌 [13,14]。反
      應(yīng)器為單相也可為復相,液相中的脈沖流光放
      電利用低能量高頻率的短脈沖電源, 脈沖火花
      式放電等離子體則利用高能量低頻率的長脈
      沖電源。圖8 可能是目前最大的全固體開關(guān)
      中低頻脈沖電源 [2], 單次放電能量為10-20
      kJ/pulse, 峰值電流為20-45 kA。從2002 年引
      進市場至今, 應(yīng)用范圍在不斷擴大。
      脈沖流光放電水處理同O3+H2O2 +UV 高
      級氧化技術(shù)很類似, 主要靠自由基及UV 輻射,
      由于脈沖流光放電等離子體能直接在液相或
      氣液界面產(chǎn)生自由基及UV 輻射, 系統(tǒng)變得簡
      單方便。高能量的脈沖火花式放電等離子體
      不僅可產(chǎn)生很強的UV 輻射而且可產(chǎn)生很強的
      壓力波無二次污染是理想的滅菌技術(shù)。
      4. 結(jié)論
      經(jīng)過近二十年的研究開發(fā), 流光放電低溫等離子體產(chǎn)業(yè)化的主要核心技術(shù)問題已基本解決, 關(guān)
      鍵設(shè)備已開始生產(chǎn), 小型號產(chǎn)品已開始應(yīng)用。目前的工作重心是如何實現(xiàn)該技術(shù)的產(chǎn)業(yè)化及開拓市
      場。相信在不遠的將來,等離子體在環(huán)保方面的應(yīng)用會得到普及。
      致謝: 作者感謝廣東杰特科技發(fā)展有限公司, 金華中荷環(huán)??萍加邢薰? Eindhoven University of Technology,
      Geo-Resource, Envitech, Korea Cottrell 等同事們的合作及支持, 本文的部分研究得到國家863 計劃的資助。
      5. 參考文獻
      1. H.H. Kim, “Non-thermal plasma processing for air pollution control: a historical review, current issues, and future
      prospects”, Plasma Processes and Polymers, Vol.1 (2004) 91-110.
      2. K. Yan, G. J.J. Winands, S.A. Nair, E.J.M. van Heesch, A.J.M. Pemen, and I. de Jong, “Evaluation of pulsed power
      sources for plasma generation”, Journal of Advanced Oxidation Technologies, Vol 7, No2, (2004) 116-122.
      3. K.Yan, E.J.M. van Heesch, A.J.M. Pemen, and P.A.H.J. Huijbrechts, “From chemical kinetics to streamer corona reactor
      and voltage pulse generator”, Plasma Chemistry and Plasma Processing, Vol. 21, No 1, (2001) 107-137.
      4. K. Yan, G.J.J. Winands, S.A. Nair, E.J.M. van Heesch, and A.J.M.Pemen, “From electrostatic precipitation to corona
      plasma system for exhaust gas cleaning”, 9th Int. Conf. on Electrostatic Precipitation, May 17-22, 2004, South Africa.
      5. K. Yan, “Corona plasma generation”, PhD Thesis, Technische Universiteit Eindhoven, The Netherlands, 2001,
      http://alexandria.tue.nl/extra2/200142096.pdf.
      6. K. Yan, S. Kanazawa, T. Ohkubo, and Y. Nomoto, “Oxidation and reduction processes during NOx removal with corona
      induced non-thermal plasma”, Plasma Chemistry and Plasma Processing, Vol 19 (1999) 421-443.
      7. R. Li, K. Yan, J. Miao, and X. Wu, "Heterogeneous reactions in flue gas Desulfurization by non-thermal plasmas",
      Chemical Engineering Science, Vol 53 (1998) 1529-1540.
      8. G.J.J. Winands, K. Yan, S. A. Nair, A.J.M. Pemen, and E.J.M. van Heesch, “Evaluation of corona plasma techniques for
      industrial applications: HPPS and DC/AC systems”, Plasma Processes and Polymers, Vol 2 (2005) 232-237.
      9. 馬隆龍, 吳創(chuàng)之, 孫立,“生物質(zhì)氣化技術(shù)及其應(yīng)用”, 化學工業(yè)出版社, 2003 年.
      10. S. A. Nair, K. Yan, A.J.M. Pemen, G.J.J. Winands, F.M. van Gompel, H.E.M. van Leuken, E.J.M. van Heesch, K.J.
      Ptasinski, A.A.H. Drinkenburg, “A high-temperature pulsed corona plasma system for fuel gas cleaning”, Journal of
      Electrostatics, 61 (2004) 117-127.
      11. W. F. L. M. Hoeben, “Pulsed corona-induced degradation of organic materials in water”; PhD Dissertation, Eindhoven
      University of Technology, The Netherlands, 2000.
      12. A. Mizuno and Y. Hori, “Destruction of living cell by pulsed high-voltage application”, IEEE Trans on Industry
      Applications, Vol 24 N 3 (1988) 387-394.
      13. A.M. Anpilov, E.M. Barkhudarov, N. Christofi, V.A. Kop'ev, I.A. Kossyi, M.I. Taktakishvili, Y. Zadiraka, “Pulsed high
      voltage electric discharge disinfection of microbially contaminated liquids”, Letters in Applied Microbiology, 35 (2002)
      90-94.
      14. W.K. Ching, A.J. Colussi, H.J. Sun, H. Nealson, and M.R. Hoffmann, “Escherichia coli disinfection by electrohydraulic
      discharges”, Environmental Science Technology, 35 (2001) 4139-4144.

      上一條:循環(huán)冷卻水化學處理技術(shù)

      下一條:請問銅離子廢水如何有效去除?

    鑫泰聯(lián)系方式

      山東鑫泰水處理技術(shù)股份有限公司
      地址:山東省棗莊市市中區(qū)中泰工業(yè)園
      王 艷:183 6669 9886
      劉賢偉:135 6112 0075
      張成寶:134 5575 9766
      陳 猛:134 5575 6188
      張衛(wèi)東:135 61119 786
      陳得地:135 6321 5762
      崔 進:136 0632 1973
      內(nèi)貿(mào)電話:0632-3461066/3461688
      外貿(mào)電話:0632-3461088/3461909
      采購電話:0632-3461906
      傳真:0632-3461077
      EMAIL:xintaiwater@163.com
      http://www.xintai-chem.com

    Baidu
    国产,欧美,日韩一区二区三区在线,欧美日韩 在线 一区二区,伊人成长在线综合视频播放,久久免费综合视频
      <label id="dnjtp"></label>
  • <sub id="dnjtp"></sub><li id="dnjtp"></li>
  • <source id="dnjtp"><optgroup id="dnjtp"></optgroup></source>